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This paper investigates the propagation of an air finger into a fluid-filled, axially
uniform tube of elliptical or rectangular cross-section with transverse length scale a
and aspect ratio α. Gravity is assumed to act parallel to the tube’s axis. The problem
is studied numerically by a finite-element-based direct solution of the free-surface
Stokes equations.

In rectangular tubes, our results for the pressure drop across the bubble tip, ∆p,
are in good agreement with the asymptotic predictions of Wong et al. (1995b) at
low values of the capillary number, Ca (ratio of viscous to surface-tension forces).
At larger Ca, Wong et al.’s (1995b) predictions are found to underestimate ∆p. In
both elliptical and rectangular tubes, the ratio ∆p(α)/∆p(α = 1) is approximately
independent of Ca and thus equal to the ratio of the static meniscus curvatures.

In non-axisymmetric tubes, the air–liquid interface develops a noticeable asymmetry
near the bubble tip at all values of the capillary number. The tip asymmetry decays
with increasing distance from the bubble tip, but the decay rate becomes very small
as Ca increases. For example, in a rectangular tube with α = 1.5, when Ca = 10, the
maximum and minimum finger radii still differ by more than 10% at a distance 100a
behind the finger tip. At large Ca the air finger ultimately becomes axisymmetric with
radius r∞. In this regime, we find that r∞ in elliptical and rectangular tubes is related
to r∞ in circular and square tubes, respectively, by a simple, empirical scaling law.
The scaling has the physical interpretation that for rectangular and elliptical tubes of
a given cross-sectional area, the propagation speed of an air finger, which is driven by
the injection of air at a constant volumetric rate, is independent of the tube’s aspect
ratio.

For smaller Ca (Ca < Ĉa), the air finger is always non-axisymmetric and the
persisting draining flows in the thin film regions far behind the bubble tip ultimately

lead to dry regions on the tube wall. Ĉa increases with increasing α and for α > α̂
dry spots will develop on the tube walls at all values of Ca.

1. Introduction
We consider the steady motion of long bubbles in rigid tubes of constant cross-

section. The aim of the study is to determine the shape of the air–liquid interface and
the pressure drop across the bubble tip as a function of capillary number, Ca (the ratio
of viscous to surface-tension forces) in rectangular and elliptical tubes. Our numerical
study complements the previous small-Ca asymptotic work of Wong, Radke & Morris
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(1995a, b) and extends their results to O(1) capillary numbers. We restrict attention
to flows in which inertial effects may be neglected, although the formulation and the
numerical method could readily be extended to finite-Reynolds-number flows.

Applications include biomechanics, coating processes, enhanced oil recovery and
flows in porous media on the pore scale. An important biological application is the
airway reopening problem (Gaver, Samsel & Solway 1990; Gaver et al. 1996), the
main motivation for our study. Many lung diseases can cause the smaller airways
to collapse non-axisymmetrically and become occluded by the fluid that lines them.
A long finger of air is believed to reopen the collapsed airway by redistributing
the fluid of the blockage as it propagates. The precise details of this mechanism
are still unclear, partly because all existing studies of this problem are based on
two-dimensional models.

Bubble propagation in circular tubes has been comprehensively investigated using
theoretical (e.g. Bretherton 1961; Park & Homsy 1984; Ratulowski & Chang 1989),
experimental (e.g. Cox 1962; White & Beardmore 1962; Goldsmith & Mason 1963;
Chen 1986; Schwartz, Princen & Kiss 1986) and numerical techniques (e.g. Reinelt
& Saffman 1985; Shen & Udell 1985; Westborg & Hassager 1989; Giavedoni &
Saita 1997). In contrast, bubble propagation in non-axisymmetric tubes has received
considerably less attention. Furthermore, all previous studies of bubble propagation
in non-axisymmetric tubes used either experimental methods or asymptotic approxi-
mations valid only at small capillary numbers (e.g. Singhal & Sommerton 1970; Kolb
& Cerro 1991, 1993; Ratulowski & Chang 1989; Wong et al. 1995a, b).

In every tube geometry, the radius of the propagating air finger increases as
the capillary number decreases. In the (singular) limit Ca→ 0, corresponding to in-
finite surface tension, or a propagation speed of zero, the shape of the air–liquid
interface approaches that of the static equilibrium configuration. This fact was ex-
ploited by Wong et al. (1995a, b), who were able to develop a small-Ca asymptotic
description of the interface evolution and pressure drop across the bubble tip by
perturbing about previously computed static equilibrium shapes in polygonal tubes
(Wong, Morris & Radke 1992).

Wong et al.’s (1995a, b) solution is directly analogous to Bretherton’s (1961) work
in circular tubes. Numerical simulations indicate, however, that Bretherton’s (1961)
asymptotic solution is accurate only at extremely small Ca (Ca < 10−3) (e.g. Reinelt
& Saffman 1985; Giavedoni & Saita 1997). We believe the present study to be
the first to consider steady bubble propagation in rigid tubes of non-axisymmetric
cross-section at O(1) Ca and we use our results to investigate the accuracy of Wong
et al.’s (1995a, b) asymptotic solution. Our study should also be regarded as a first
step towards an improved model of the fluid flows in the three-dimensional airway
reopening problem.

2. The model
The model problem, sketched in figure 1, is that of an air finger moving at a

constant speed U, under an internal pressure pb, into a tube of transverse length
scale a. The tube is filled with a Newtonian fluid of viscosity µ, density ρ and the
(constant) surface tension at the air–liquid interface is given by γ. (The presence of
surfactants may lead to a non-uniform surface tension on the interface, but this effect
is neglected in the present work.) The tube is assumed to be open far ahead of the
finger tip and fluid is driven out of the tube by the motion of the finger, leaving a
film of fluid of thickness h on the tube walls. Gravitational effects are restricted to
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Figure 1. Sketch of the problem: an air finger propagates into a tube of constant cross-section and
deposits a film of fluid behind the advancing finger tip. In non-circular tubes, the film thickness, h,
is non-uniform in the azimuthal direction.

cases in which gravity acts in a direction parallel to the tube axis. This restriction
does not break the transverse symmetry of the problem and allows the restriction of
the computational domain to one quarter of the tube’s cross-section for rectangular
and elliptical geometries.

We consider flows in a regime in which inertial forces are negligible. The problem
is thus governed by two dimensionless parameters: the capillary number (Ca) and
the Bond number (Bo), being the ratios of viscous to surface-tension forces and
gravitational to surface-tension forces, respectively:

Ca ≡ µU

γ
, Bo ≡ ρga2

γ
, (2.1)

where g is the acceleration due to gravity.
The problem is formulated in dimensionless Cartesian coordinates x = (x1, x2, x3) =

x∗/a and the finger propagates in the negative x3-direction. Hereinafter, an asterisk is
used to indicate dimensional quantities, as opposed to their dimensionless equivalents.
The fluid velocity is scaled with the bubble velocity, u = u∗/U, and the internal fluid
pressure is scaled on the viscous scale, p = p∗/(µU/a).

In a frame moving with the (constant) velocity of the bubble, U, the flow is governed
by the dimensionless, steady Stokes equations:

− ∂p
∂xi

+
Bo

Ca
ki +

∂

∂xj

(
∂ui

∂xj
+
∂uj

∂xi

)
= 0, (2.2a)

and the continuity equation

∂ui

∂xi
= 0, (2.2b)

where i, j = 1, 2, 3 and summation convention is used. The unit vector k = e3 indicates
the direction of gravity so that a positive Bond number corresponds to the case in
which the air finger moves against the direction of gravity (upwards).

The free-surface boundary conditions are those of non-penetration

uini = 0 on the free surface, (2.3a)

and the dynamic boundary condition

−pni +

(
∂ui

∂xj
+
∂uj

∂xi

)
nj +

1

Ca
κni = −pbni on the free surface. (2.3b)

n is the unit normal to the free surface (directed out of the fluid); κ = κ∗a is the
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Figure 2. Illustration of the coordinate axes and a (coarse) fluid finite-element mesh for an air
finger propagating into a rectangular tube.

dimensionless (first) curvature of the surface, the sum of the principal curvatures; and
pb is the dimensionless internal bubble pressure. In the moving frame of reference,
the no-slip boundary condition is

u = (0, 0, 1) on the tube walls. (2.3c)

Finally, we locate the bubble tip at the origin by enforcing

x3 = 0 at the bubble tip. (2.3d)

In order to solve these equations numerically, we decompose the fluid domain,
shown in figure 2, into a number of finite elements. We exploit symmetry at the
planes x1 = 0 and x2 = 0 by restricting the computational domain to positive values
of the transverse coordinates: x1 > 0, x2 > 0. In region I, x3 < zfix, the elements remain
fixed during the computation. In regions II and III, x3 > zfix, the position of the free
surface affects the fluid domain and the nodal positions are adjusted by the method
of spines (Kistler & Scriven 1983). The free surface is parameterized by the distance
h(ζ1, ζ2) from a fixed surface, Γ = Γ1 ∪ Γ2, where Γ1 is the tube wall in regions II and
III and Γ2 is the dividing plane between regions I and II, x3 = zfix. We parameterize
Γ by two surface coordinates, ζ1 and ζ2, and denote the position vector of any point
on Γ by Γ(ζ1, ζ2). On Γ1, ζ1 and ζ2 are the polar coordinates, x3 and θ ≡ tan−1(x2/x1),
whereas on Γ2, ζ1 and ζ2 are the Cartesian coordinates in the transverse plane, x1

and x2.
The distance h is measured in the direction of the spines, S(ζ1, ζ2). Each spine is of

unit length and is anchored at a fixed point on Γ . The position of the free surface,
Rfs, is then given by

Rfs(ζ1, ζ2) = Γ(ζ1, ζ2) + h(ζ1, ζ2)S(ζ1, ζ2). (2.4)

It is convenient to decompose Γ into a region close to the bubble tip (x3 < zc,
region II in figure 2) and a downstream region (x3 > zc, region III in figure 2).
In region II, the spines are all directed to a single point (0, 0, zc), whereas in region III
if the base of the spine is at (x1, x2, x3), the spine is directed towards (0, 0, x3). These
definitions provide a continuous transition between the two regions and the dashed
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lines in figure 2 indicate spine directions in region II, showing the intersection at the
point (0, 0, zc). The nodal points of each element in regions II and III are chosen to
lie at fixed fractions along the spines. As the free surface deforms, the distance from
Γ to the free surface changes and the nodal points adjust to remain at the same fixed
fractions along the spine.

We discretize the fluid variables using isoparametric, Taylor–Hood elements (Taylor
& Hood 1973), and the spine heights by isoparametric, two-dimensional quadratic
elements. The dynamic boundary condition (2.3b) is incorporated into the weak form
of the momentum equation by partial integration (Ruschak 1980) to give∫∫∫

Bo

Ca
kiψ

(F) dV +

∫∫∫ [
p
∂ψ(F)

∂xi
−
(
∂ui

∂xj
+
∂uj

∂xi

)
∂ψ(F)

∂xj

]
dV

+

∫∫ [
−pni +

(
∂ui

∂xj
+
∂uj

∂xi

)
nj

]
ψ(F) dS\Sfs

+
1

Ca

∫∫
1

g
[g1]i

(
g22

∂ψ(F)

∂ζ1

− g12

∂ψ(F)

∂ζ2

)
+

1

g
[g2]i

(
g11

∂ψ(F)

∂ζ2

− g12

∂ψ(F)

∂ζ1

)
dSfs

−
∫∫

pbψ
(F)ni dSfs − 1

Ca

∮
ψ(F)mi ds = 0, (2.5a)

where ψ(F) are the piecewise, tri-quadratic velocity basis functions. The volume inte-
grals are evaluated over the entire computational domain, V ; the surface integrals
over the free surface, Sfs, or the boundary of the computational domain, excluding
the free surface, S\Sfs

; and the line integral over the line bounding the free surface, B.
The covariant base vectors of the free surface, the metric tensor and its determinant

are defined by

g1 =
∂Rfs

∂ζ1

, g2 =
∂Rfs

∂ζ2

, gβδ = gβ · gδ, g = g11g22 − g12g12,

where the indices β and δ take the values 1 or 2. The notation [gβ]i indicates the ith
component of the base vector gβ . The unit vector m is tangent to the free surface and
normal to the curve B, directed out of the computational domain, see figure 3.

The system is completed by the weak forms of the continuity equation (2.2b) and
non-penetration condition on the free surface (2.3a):∫∫∫

∂ui

∂xi
ψ(P ) dV = 0 and

∫∫
uiniψ

(H) dSfs = 0, (2.5b, c)

where ψ(P ) are the piecewise, tri-linear pressure basis functions and ψ(H) are the
piecewise, bi-quadratic basis functions for the spine heights.

2.1. ‘End’ boundary conditions

Far from the bubble tip, the motion becomes independent of the axial coordinate
and the axial component of (2.2a) reduces to a Poisson equation:

Bo

Ca
+

∂

∂xβ

(
∂u3

∂xβ

)
= 0, (2.6a)

where β = 1, 2 – the transverse directions. The no-slip boundary condition (2.3c) still
applies and becomes

u3 = 1 on the tube walls. (2.6b)
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Figure 3. The air–liquid interface, Sfs, is bounded by the closed curve B and is locally described by
the covariant base vectors g1(ζ1, ζ2) and g2(ζ1, ζ2). The vector m is tangent to Sfs, normal to B and
directed out of the free surface.

As x3 →∞, the dynamic boundary condition (2.3b), becomes a zero-tangential-stress
boundary condition

∂u3

∂n
= 0 on the air–liquid interface, (2.6c)

where n is the normal to the interface in the transverse plane.
In two-dimensional, or axisymmetric, formulations of similar problems, previous

investigators (Reinelt & Saffman 1985; Halpern & Gaver 1994; Heil 2001) have
solved the Poisson equation (2.6a) analytically at both the ‘inlet’ (x3 → −∞) and
‘outlet’ (x3 →∞) surfaces. The resulting axial velocity fields are then applied as
Dirichlet boundary conditions. In these cases, the ‘inlet’ velocity field is a function
of the film thickness behind the air finger and the explicit coupling between the
‘inlet’ and ‘outlet’ ensures that the flux into the domain is equal to the flux out. This
approach may be extended to the three-dimensional problem, but, in a general tube
cross-section, the two Poisson equations must be solved numerically.

We present an alternative formulation of the boundary conditions that requires
the solution of only one Poisson equation and eliminates the direct coupling between
the inlet and outlet faces. At the outlet, we solve the Poisson equation (2.6a) to
determine the axial velocity profile which we impose as a Dirichlet boundary condition
for the axial velocity. In the transverse directions, tractions consistent with the solution
of the Poisson equation are imposed, to allow the development of transverse draining
flows. (In the zero-Bond-number case, the transverse tractions are identically zero.)
At the inlet, the transverse velocity components are set to zero, enforcing parallel
flow, but the axial boundary condition is left traction free – the natural boundary
condition. Thus, mass is conserved via the continuity equation with no need for
direct coupling across the entire domain. The elimination of the explicit upstream–
downstream coupling not only avoids the solution of a second Poisson equation
but was also found to be beneficial in the frontal solution technique, see § 2.2, as it
reduces the size of the frontal matrix. A slight subtlety arises from the fact that a
traction-free inlet face is equivalent to setting the pressure to zero at the inlet, which
is inconsistent with setting the bubble pressure to zero. Thus, pb must be treated as an
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unknown in the problem and an additional equation is required to determine its value.
The equation is generated by treating (2.3d) as a residual rather than an essential
boundary condition. A similar method was used by Heil (2000) in the simulation of
the propagation of an air finger into a flexible-walled channel. This approach has the
further advantage of ensuring that u · n = 0 is enforced, in a weak sense, along the
entire air–liquid interface.

2.2. Numerical implementation

The discrete form of the nonlinear system of equations (2.5a–c) is solved by Newton–
Raphson iteration. A frontal scheme (Duff & Scott 1996) was used to assemble
the Jacobian matrices and solve the resulting linear systems. The frontal solver
minimizes memory requirements and was found to be much more efficient than
assembling the entire Jacobian matrix before solving. The entries of the Jacobian
matrix were assembled analytically, apart from the off-diagonal terms associated with
spine variables which were generated by finite differencing. For a typical initial guess,
the residuals are of O(1) and the iteration was deemed to have converged when the
absolute value of the largest residual was less than 10−8.

A problem involving approximately 20 000 degrees of freedom, our standard reso-
lution, requires about two minutes of CPU time per Newton iteration on a 1.2 GHz
Linux PC. This formulation was found to be very robust and starting from an initial
interface shape, consisting of a spherical cap matched to a uniform circular cylinder, a
converged solution is typically obtained within 5 iterations. Once a converged solution
is obtained, a continuation technique is used to incrementally step through different
values of the capillary and Bond numbers.

A large number of tests were conducted to validate the newly developed code. These
included (i) the computation of flows in uniform tubes in the absence of the air–liquid
interface; (ii) capillary statics problems in which the in- and outflow velocities were
set to zero; and (iii) comparisons of axisymmetric results with those of other studies,
see § 3.1. The spatial convergence of all results was ensured by repeating selected cases
with a finer spatial resolution (see figure 7(a) and Appendix A).

Finally, the effect of the downstream length of the computational domain upon
the results was investigated, with particular attention paid to the development of
draining flows in non-axisymmetric geometries. It was found that the boundary
conditions described in § 2.1 are rather forgiving and that the solution at a given
position was not affected by an increase in the length of the computational domain;
see figure 7(b). Thus, studies of the flow close to the finger tip could be conducted in
relatively short domains.

3. Results and discussion
3.1. Axisymmetric tube (validation)

The problem of bubble propagation in an axisymmetric (circular) tube has been
widely studied and is here used to validate the numerical method described in
§ 2. The governing equations (2.2a,b) are formulated in Cartesian coordinates and
the computation of axisymmetric solutions is, therefore, a non-trivial validation of
the general three-dimensional code. Bretherton (1961) used lubrication theory and
simple matching to derive the expressions

h∞ = 1.3375Ca2/3 and ∆p
Ca

= 2 + 7.4467Ca2/3 as Ca→ 0, (3.1a, b)
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Figure 4. Results for a circular tube: (a) film thickness far from the finger tip and (b) pressure
drop (on the capillary scale) across the finger tip plotted against capillary number (solid line).
Bretherton’s theoretical result for low Ca is shown as a dashed line and the numerical results
of Reinelt & Saffman (1985) are shown as boxes. Cox’s (1962) experimental asymptote for film
thickness at high Ca is the horizontal grey line in (a).
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Figure 5. Effects of gravity in a circular tube: (a) film thickness far from the finger tip and (b)
pressure drop (on the capillary scale) across the finger tip plotted against capillary number. The
results for Bond numbers of 0.45, −0.45 and 0 are shown.

where h∞ is the film height far behind the finger tip and ∆p
Ca

= ∆p∗/(γ/a) is the
pressure drop across the tip on the capillary scale. Figure 4 shows our numerical
results, equations (3.1a, b) and the results from the axisymmetric computations of
Reinelt & Saffman (1985). The high-capillary-number asymptote for h∞, found exper-
imentally by Cox (1962), is also shown in figure 4(a). The agreement with previous
numerical results is good over the entire range of Ca (relative error less than 1%) and
at Ca = 10, h∞ = 0.361, in agreement with the computations of Giavedoni & Saita
(1997).

Figure 5 shows the effects of gravity upon the film thickness and pressure drop
across the finger tip. In the majority of physiological and industrial applications,
these effects are expected to be minor owing to the relatively small radii of the
vessels concerned. The values of Bo = ±0.45 are those used in Kolb & Cerro’s (1991)
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experimental study. For positive Bond numbers, corresponding to a bubble travelling
upwards, the main effect of gravity is to cause an additional flow into the film
surrounding the bubble and hence a thickening of the film and an increase in the
pressure drop across the finger tip. Bretherton (1961) obtained the correction term
1 + 2

3
Bo for the film thickness, in the low-capillary-number limit, although he gives

no explanation of its derivation. For a bubble travelling downwards (Bo < 0), gravity
causes less fluid to enter the film; hence its thickness is reduced and the pressure drop
decreases.

The Bond number only enters the governing equations (2.2a,b) in the dimensionless
grouping Bo/Ca and so at high values of the capillary number, gravitational effects
become unimportant compared to the balance of viscous and surface-tension forces.
Thus, the data collapse onto a single line as the capillary number increases. At the
lowest value of Ca shown in figure 5 (Ca = 10−4) there is a noticeable difference in
film thicknesses among the three cases. The film thicknesses do not agree with the
correction term of Bretherton, however, presumably because the Bond number is too
large. Thulasidas, Abraham & Cerro (1995) conducted experiments in circular tubes
with a Bond number of 0.43 and also concluded that this value was too large to
expect agreement with Bretherton’s theory.

In order to validate the non-zero Bond number computations, we reproduced the
results of Reinelt (1987) for the purely buoyant rise of a long bubble in a sealed
circular tube. The problem in a sealed tube is a special case of that in an open tube
in which the upward flux of fluid due to the bubble motion exactly balances the
downward flux due to gravity. In a stationary frame of reference, therefore, the net
axial flow rate, Q, will be zero and the corresponding flow rate in the computational
domain is Qc = π/4. At a given Ca, the (unique) value of Bo such that Q = Qc was
found by a Newton–Raphson method, where |Q− Qc|/Qc < 10−5 was used as the
convergence criterion. Again, the agreement between the two sets of results was good
over the entire range of Ca (relative error less than 1%).

3.2. Square tube

In a square tube, the finger radius also increases as the capillary number decreases,
but cannot be greater than the minimum cross-sectional radius of the tube. Hence,

below a certain value of the capillary number, Ĉa, the air–liquid interface far behind
the bubble tip must become non-axisymmetric and draining flows develop that drive
the fluid into distinct lobes.

3.2.1. Draining flows

The development of draining flows and corresponding changes in interface shape
with increasing axial distance from the finger tip are shown in figure 6(a–d ) for a
capillary number of 0.007. The first cross-section is at x3 = 0.7, less than one half-
width downstream of the finger tip. In this region, the interface is approximately
axisymmetric, but transverse flows can be seen to be driving fluid into the corner
of the square and a dimensionless pressure gradient of about 35 has developed
between the sides and corner of the cross-section. At the next cross-section, x3 = 1.2,
the interface has become non-axisymmetric and the transverse pressure gradient has
increased enormously to a value of approximately 235. At x3 = 1.7, the magnitude of
the draining flows is reduced and a constant-pressure lobe is beginning to develop at
the sides of the cross-section. Finally, by x3 = 2.2, the pressure drop is confined to a
small thin-film region that connects the two constant-pressure lobes, and there is very
little fluid motion. The further details of the evolution are described (in the limit of
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Figure 6. Draining flows developing in a tube of square cross-section at a capillary number of
0.007. Transverse cross-sections are shown at axial distances (a) 0.7, (b) 1.2, (c) 1.7 and (d ) 2.2
from the bubble tip. The vectors indicate transverse velocities and the colour contours represent
the pressure. The vector scale is always the same, but the pressure scale differs from cross-section
to cross-section. The film becomes thinner as x3 increases.

small capillary number) by Wong et al. (1995a) but are hard to resolve numerically
because of the extreme thinning of the film and the very long axial length scales
required for significant film rearrangement.

3.2.2. A tip asymmetry

Figure 7(a) shows the effect of capillary number upon the radius of the air finger
at a distance 11 half-widths behind the finger tip; rh is the radius measured in
the horizontal plane x1 = 0 and rd is the radius measured in the diagonal plane

x1 = x2. The divergence of the two radii at low Ca (Ca < Ĉa) demonstrates that
the interface has become non-axisymmetric in this regime and the data are in good
qualitative agreement with the experimental measurements of Kolb & Cerro (1991)
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Figure 7. Results in a square tube: (a) Finger radii, rh (solid) and rd (dashed) vs. capillary number.
The radii are measured 11 half-widths behind the finger tip. The symbols show the same results
rh (triangles) and rd (squares), computed on a refined mesh. The inset graph is an enlargement of
the results at high Ca. (b) Finger radii, rh (solid) and rd (dashed) plotted against axial distance x3

for Ca = 10. The inset graph shows the same data, but with results for a shorter computational
domain overlaid as boxes.

and the theoretical predictions of Ratulowski & Chang (1989), who found Ĉa ≈ 0.04
(based on a numerical solution of the equations of lubrication theory in the arc-length
formulation).

The unexpected divergence of the two radii for Ca > 4 in figure 7(a), see inset, is a
consequence of a previously unobserved phenomenon: an asymmetry in the region of
the bubble tip at high Ca. This asymmetry is illustrated in figure 7(b) which shows the
shape of the air–liquid interface in the two planes x1 = 0 and x1 = x2 for Ca = 10.
The interface is noticeably non-axisymmetric immediately behind the finger tip, but
eventually decays to an axisymmetric state.

The tip asymmetry is caused by the non-axisymmetric passage of fluid around the
finger tip. In square tubes, the fluid particles tend to move towards the corners, which
offer less resistance to the flow than the thinner regions along the sides of the tube. The
ensuing transverse flows induce a transverse pressure gradient that lowers the fluid
pressure in the corners, where the air–liquid interface moves radially outwards. In the
region behind the bubble tip, surface tension acts to restore the air–liquid interface to
an axisymmetric shape, and the non-uniform pressure distribution continues to drive
fluid into the corner until rd = rh. Thus, the flow towards the corner that originally
caused the non-axisymmetry to develop also restores the interface to an axisymmetric
shape.

As Ca increases, surface tension becomes relatively weaker and the decay rate of
the tip asymmetry decreases. In figure 7(a), the radii were measured 11 half-widths
behind the finger tip. For Ca > 4 the interface is still visibly non-axisymmetric at
this position. Repeating the calculations using a longer domain indicates that at a
distance 32 half-widths behind the finger tip the interface remains axisymmetric until
Ca > 8, when the tip asymmetry again becomes noticeable.

Incidentally, the inset graph in figure 7(b) demonstrates that the results in a short
computational domain are indistinguishable from those in a longer one. Thus, despite
the fact that the short domain is not long enough to resolve the decay to the
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Figure 8. Pressure drop (boxes) across the bubble tip (on capillary scale) in a square tube vs.
capillary number. The line is the asymptotic prediction of Wong et al. (1995b), valid as Ca→ 0.

axisymmetric state, the boundary conditions, described in § 2.1, capture the correct
behaviour without the need to match to decaying eigenfunctions explicitly.

The computations indicate that the decay rate of the tip asymmetry also decreases

as Ca→ Ĉa ≈ 0.033. This decrease is due to the extreme thinning of the film as
rh → 1 and the corresponding very slow draining flows from the sides into the corner.

Details of the calculation of Ĉa are shown in Appendix B.

3.2.3. Pressure drops

In practical applications, one of the most important parameters is the pressure drop
across the bubble tip. Ratulowski & Chang’s (1989) lubrication-theory-based study
predicted that, at low Ca, the pressure drop over the tip of a long bubble moving
through a square tube would be higher than in a circular tube of the same width.

In contrast, Wong et al. (1995b) argued that the reduced contact between the
bubble and tube wall in a square tube, compared to a circular tube, should lead to
reduced drag and hence a lower pressure drop across the bubble tip. They estimated
pressure drops by perturbing about numerically calculated static equilibrium shapes
and using the method of matched asymptotic expansions. The pressure drop across
the bubble tip in a square tube was found to be

∆p
Ca

= 1.8862 + 2.75Ca2/3 as Ca→ 0, (3.2)

where the pressure drop is again non-dimensionalized on the capillary scale. This
expression is compared to our numerical results in figure 8.

At Ca = 0.00081 (the limit of our computations) the relative error between the
numerical solution and equation (3.2) is approximately 0.5%, but by Ca = 0.01 the
difference has increased to 5%. In axisymmetric geometries, the discrepancies between
small-Ca asymptotic predictions and numerical solutions are of similar magnitudes
(Reinelt & Saffman 1985; Giavedoni & Saita 1997) and we may conclude that for this
type of problem, lubrication theory is only accurate at very small capillary numbers.
In the square capillary, the asymptotic predictions systematically underestimate the
pressure drop across the bubble tip whereas the opposite is true for flows in circular
tubes; see figure 4(b). Nonetheless, our results confirm the scaling of Wong et al.
(1995b) and demonstrate that, at all values of Ca, the pressure drop over the bubble
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Figure 9. Effects of gravity in a square tube: (a) Pressure drop across the bubble tip on the capillary
scale and (b) finger radii, rh and rd vs. capillary number. The radii are measured 11 half-widths
behind the finger tip. The results for Bo = 0.45 and Bo = −0.45 are shown as well as Bo = 0.
(c) Finger radii, rh and rd plotted against axial distance x3 for Ca = 0.1. The results for Bo = 0.45
(dotted) and Bo = −0.45 (dashed) are shown as well as Bo = 0 (solid). For each case, the box marks
the axial position at which the relative difference between the two radii (rh − rd)/rh is 0.01%.

tip is smaller in a square capillary than in a circular capillary of the same transverse
length scale.

3.2.4. Gravitational effects

The inclusion of gravity causes changes in the film thickness and pressure drop at
a given capillary number, much as in the axisymmetric problem. Figure 9(a, b) shows
the pressure drop across the bubble tip and the two finger radii, rh and rd, measured
11 half-widths behind the finger tip against Ca for the values of the Bond number
used in Kolb & Cerro’s (1991) experiments: Bo = 0, −0.45 and 0.45.

As in the axisymmetric case, at high values of Ca, the effects of gravity become

negligible. At low Ca, gravity affects the film thickness and alters the value of Ĉa. At

a given Ca, a positive Bond number causes the film to become thicker. Hence, Ĉa
decreases with an increase in Bond number, see figure 9(b).
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Figure 10. Computed interface cross-sections in elliptical and rectangular tubes for Ca = 0.15 and
α = 1.5. The cross-sections are taken at x3 = 10. The reference length scale is the shortest semi-axis
in each case.

The changes in film thickness also affect the decay rates of the tip asymmetry at
given values of Ca, see figure 9(c). For positive Bo, the film is thicker and fluid will
drain into the corner more quickly. Hence, the decay to the axisymmetric equilibrium
state is achieved over a shorter axial length. The opposite is true for negative Bo,
where the reduced film thickness decreases the decay rate. These effects are most
clearly seen by comparing the axial locations of the three boxes in figure 9(c). For
each case, the box marks the position at which the relative difference between the
rh and rd is 0.01%. As the film thickness decreases, the decay rate decreases and the
boxes move further from the finger tip.

3.3. Rectangular and elliptical tubes

In rectangular and elliptical tubes an extra control parameter enters the problem:
the aspect ratio of the tube, α. In the following, the aspect ratio is always altered by
changing the semi-axis in the horizontal plane, x1 = 0 and keeping the other semi-axis
equal to unity, see figure 10. The effects of gravity are similar to those in circular and
square tubes and, in the interests of brevity, we present data only for Bo = 0.

3.3.1. Interface shapes

If the tube’s aspect ratio differs from 1, the fluid film will be thicker along the longer
of the two semi-axes of the tube. The thicker film offers less resistance to the fluid
as it passes the finger tip and so fluid is driven from the shorter semi-axis towards
the longer. This causes the interface to become non-axisymmetric close to the finger
tip, as in the case of the square tube. The finger radius corresponding to the longer
semi-axis, always rh in our computations, becomes greater than that corresponding
to the shorter, rv . Again, surface tension acts to restore the air–liquid interface to an
axisymmetric state and fluid continues to flow towards the longer semi-axis, causing
rh to decrease and rv to increase with increasing axial distance. At high values of
Ca, the interface eventually becomes axisymmetric far downstream, but at low Ca, rv
approaches 1 and an axisymmetric equilibrium state cannot exist.

Figure 11 shows the finger radii, rh and rv , plotted against Ca for rectangular and
elliptical tubes. The general trends are the same in both cases. At a given value
of Ca, an increase in aspect ratio causes an increase in finger radius and hence a

decrease in film thickness in the plane of the shorter semi-axis. The value of Ĉa
at which the equilibrium interface shape becomes non-axisymmetric increases with
increasing aspect ratio, a direct result of this film thinning. The thinner films also
lead to a decrease in the decay rate of the tip asymmetry which becomes more and
more evident at high values of Ca and high values of α. In fact, figure 11(a) shows
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Figure 11. Finger radii, rv (solid) and rh (dashed) vs. capillary number for the aspect ratios 1, 1.1,
1.3 and 1.5: (a) rectangular tube, (b) elliptical tube. The radii are measured at a distance 100 times
the shorter semi-axis behind the finger tip. The aspect ratio is altered by increasing the semi-axis
corresponding to rh and keeping the other fixed at unity. α increases in the direction of the arrows.
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Figure 12. Scaled finger radius at infinity, s∞, vs. capillary number for the aspect ratios 1, 1.1, 1.3
and 1.5: (a) rectangular tube, (b) elliptical tube. The scaled finger radius is obtained by scaling the
asymptotic finger radius, r∞, by the square-root of the aspect ratio. For the rectangular tube, the
rescaling works so well that the scaled radii for different aspect ratios are almost indistinguishable.

that in a rectangular tube with α = 1.5, the interface is noticeably non-axisymmetric,
at all Ca, a distance 100 times the shorter semi-axis behind the finger tip.

3.3.2. A rescaling for the asymptotic finger radii in non-axisymmetric tubes

In regimes in which the interface is axisymmetric, figure 11 suggests a certain
similarity between the general shapes of the curves at different aspect ratios. Motivated
by this observation, we found that a linear rescaling of the form

s∞ ≡ r∞α−1/2 (3.3)

collapses the data onto the line α = 1, for both rectangular, figure 12(a), and elliptical
tubes, figure 12(b). Here r∞ is the axisymmetric bubble radius infinitely far behind
the bubble tip. It is calculated from the flow rate in the computational domain, Q, by
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using the relation r∞ = 2
√

(α− Q)/π for the rectangle, and r∞ =
√

(πα− 4Q)/π for
the ellipse.

The agreement between the scaled radii is remarkable and it appears to be near
perfect in the rectangular tubes. In fact, the scaled radii for different aspect ratios
are almost indistinguishable. In elliptical tubes, the agreement is not as good and the
error increases with aspect ratio. At α = 1.5, however, the relative error is less than
1% over the range of Ca for which the interface is axisymmetric. It must be stressed
that the scaling (3.3) is purely empirical and only applies to the finger radii far behind
the bubble tip. In fact, the shape of the air–liquid interface near the bubble tip varies
considerably with α. Therefore, the rescaling does not indicate similarity between the
overall finger shapes for different values of α.

The rescaling (3.3) has a simple physical interpretation for rectangular tubes of
differing aspect ratios but the same cross-sectional area: if air is injected at a constant
volumetric flow rate, the propagation speed, and hence the radii, of the resulting air
fingers will be the same in every tube, provided that the ultimate equilibrium state of
the air–liquid interface is axisymmetric. This result is also true for elliptical tubes of
moderate aspect ratio.

This rescaling allows us to conjecture that as the aspect ratio increases there will be
an aspect ratio, α̂ beyond which no axisymmetric equilibrium solution exists and the
scaling breaks down. This follows from the observation that for both the circular and
square tubes the finger radii approach a (different) minimum value as Ca increases,
r(min)∞ = limCa→∞ r∞(α = 1). If the rescaled minimum radius, s(min)∞ , is greater than α−1/2,
then an axisymmetric interface cannot fit inside the tube. The aspect ratio, α̂, may
therefore be calculated by solving the equation

s(min)
∞ = r(min)

∞ =
1√
α̂
. (3.4)

In the case of the square tube, r(min)∞ ≈ 0.7, from which it follows that α̂ ≈ 2.04 for
rectangular tubes.

To check this prediction, we computed Ĉa(α) for elliptical and rectangular tubes, see

figure 16 in Appendix B. Ĉa was found to increase with increasing α and ultimately

appears to approach an asymptote as α→ α̂. In elliptical tubes, Ĉa approaches an
asymptote as α→ 2.65, whereas equation (3.4) predicts α̂ = 2.48. This shows again
that the scaling (3.3) is poorer for elliptical tubes.

3.3.3. Pressure drop

Wong et al. (1995a, b) considered the propagation of bubbles in rectangular tubes
and found that the pressure drop across the bubble tip has the form ∆p

Ca
= A+ B Ca2/3

as Ca→ 0, where A and B are constants that depend upon the aspect ratio. Figure 13
compares our numerical results with the asymptotic predictions for rectangular tubes
of aspect ratio α = 1.2 and 2. The results are again in good agreement only at very
small values of Ca (relative error ≈ 0.5% at Ca = 0.00081). At higher values of Ca,
the asymptotic predictions underestimate the pressure drops, just as in the square
tube.

Increasing the aspect ratio leads to a decrease in pressure drop across the bubble tip
in both ellipses and rectangles, see figure 14. Furthermore, the pressure drop across the
bubble tip in a rectangular tube is always lower than that in an elliptical tube of
the same aspect ratio and transverse length scale, presumably because of the reduced
contact between the bubble and the walls in the former case.
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Figure 13. Pressure drop across the finger tip for rectangular tubes of different aspect ratio. Our
numerical results (boxes) are plotted together with the low-Ca asymptotic result of Wong et al.
(1995b) (solid lines).
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Figure 14. Pressure drop across the bubble tip (on capillary scale) vs. capillary number for the
aspect ratios 1, 1.1, 1.3 and 1.5: (a) rectangular tube, (b) elliptical tube. The aspect ratio is altered
by increasing the semi-axis corresponding to rh and keeping the other fixed at unity. α increases in
the direction of the arrows.

The rescaling for the asymptotic finger radii, see § 3.3.2, may be interpreted as a
rescaling for the pressure jump across the interface far behind the bubble tip. The
pressure drops across the bubble tip also appear to be similar, see figure 14. We find
that to high accuracy the pressure drop in an elliptical or rectangular tube of aspect
ratio α may be calculated from the α = 1 curve by a linear rescaling of the form

∆p
Ca

(α, Ca) = f(α) ∆p
Ca

(α = 1, Ca). (3.5)

In this case, we can find no simple functional form for f(α), but table 1 lists values
of f(α) for a number of values of α. The values are the same for rectangles and
ellipses, within the accuracy of two decimal figures. In the rectangular case the results
collapse onto those of the square and in the elliptical case they collapse onto those
of the circle.

Again, the scaling is empirical, but its accuracy is comparable to the scaling for
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α 1 1.1 1.2 1.3 1.5 1.7 2

f(α) 1 0.96 0.92 0.89 0.84 0.80 0.76

g(α) = α1/2f(α) 1 1.007 1.008 1.015 1.029 1.043 1.075

Table 1. Values of the function f(α): the ratio of pressure drop across the bubble tip in a tube
of aspect ratio α to the α = 1 result; and g(α) = α1/2f(α): the result rescaled to apply to tubes of
constant cross-sectional area.

Ellipse Rectangle

α QT CaT QT CaT

1 0.393 0.691 0.523 0.680
1.1 0.432 0.688 0.575 0.675
1.3 0.511 0.666 0.675 0.642
1.5 0.589 0.631 0.772 0.592

Table 2. Values of the flow rate and capillary number at which the flow undergoes a kinematic
transition from complete bypass to recirculation.

the asymptotic finger radii. The relative error between results scaled using the data
in table 1 and the exact computations is within 1% over the entire range of Ca.
Considering the limit Ca→ 0, it follows that f(α) must be approximately equal to
the ratio of mean curvatures of the corresponding static equilibrium meniscus shapes.
Wong et al. (1995a) have calculated such curvatures numerically for a number of tube
geometries and the appropriate ratios for rectangular tubes do indeed agree with the
values of f(α) presented above.

It is important to recall that a change in α changes the cross-sectional area of
the tube. The results for tubes of constant cross-sectional area, but different aspect
ratios, are obtained on multiplication of ∆p

Ca
by α1/2. If α > 1, g(α) ≡ α1/2f(α) > 1,

see table 1, and g(α) increases monotonically with α. It follows that in tubes of equal
cross-sectional area, the pressure drop increases with aspect ratio, albeit only slightly.

3.4. Flow fields

In all geometries, the volume flux past the bubble decreases with decreasing capillary
number. Taylor (1961) showed by purely kinematic arguments that at sufficiently
small flow rates, a recirculating flow region (in the moving frame of reference) must
exist ahead of the bubble tip. The fluid near the wall is always directed towards
the bubble, but at low flow rates the fluid near the centreline will be directed away
from the tip, creating a recirculating flow region. The flow rate at which the axial
velocity on the tube’s centreline far ahead of the bubble tip changes sign, QT , can be
determined from the exact solutions for Poiseuille flow in elliptical and rectangular
tubes (e.g. White 1991, pp. 119–120). Table 2 presents the values of QT and the
capillary numbers at which this transition occurs, CaT , for bubbles propagating in
elliptical and rectangular tubes of different aspect ratios in the absence of gravity. If
Bo 6= 0, QT remains unchanged, but CaT decreases with increasing Bo.

For flows in axisymmetric tubes, the line S on the bubble surface which separates
the recirculating flow region from the region in which fluid passes around the bubble
is a stagnation line. In non-axisymmetric tubes there are significant transverse flows
on the bubble surface and the fluid only comes to rest at a small number of stagnation
points. This is illustrated in figure 15 for the flow past a bubble in a rectangular tube



Steady propagation of a semi-infinite bubble into a tube 109

(d )

(b)(a)

(c)

Figure 15. Streamlines in the moving frame of reference for a rectangular tube α = 1.5 (a) Ca = 0.2,
(b) Ca = 0.5, (c) Ca = 0.55, (d ) Ca = 2.0. Streamlines are shown on the surface of the bubble and
in the plane along the shorter semi-axis, x2 = 0.

of aspect ratio α = 1.5. Four generic flow regimes can be identified. At low capillary
numbers, figure 15(a), there are five stagnation points (nine for a square tube), one at
the bubble tip and four (eight) at a finite radial distance in the planes of symmetry.
In the classification of Lighthill (1963) and Tobak & Peake (1982), the stagnation
point on the centreline is a ‘point of separation’; the line S which connects the outer
stagnation points is a ‘line of attachment’. In non-axisymmetric geometries the line S
is not a stagnation line but it cannot be crossed by any fluid particles on the bubble
surface. As Ca increases, the stagnation points move towards the centreline and a
topological change occurs when the stagnation points on the symmetry plane dividing
the shorter semi-axes coincide with the stagnation point at the tip, figure 15(b). This
regime does not occur when α = 1 because there must be symmetry about the line
x1 = x2. As Ca increases yet further, the stagnation points on the other symmetry
plane eventually coincide at the tip and then move onto the centreline ahead of
the bubble, figure 15(c). This structure was first conjectured by Taylor (1961), but it
was not observed until the recent axisymmetric computations of Giavedoni & Saita
(1997). Finally, for Ca > CaT , there is only one stagnation point at the bubble tip
and there is no fluid recirculation.

4. Summary and further discussion
We have investigated the propagation of long bubbles into tubes of elliptical and

rectangular cross-section, including the special cases of circular and square tubes. For
flows in rectangular tubes, we were able to confirm Wong et al.’s (1995b) asymptotic
predictions for the pressure drop across the bubble tip in the limit Ca → 0, Bo = 0.
At higher values of the capillary number, the asymptotic theory underestimates the
pressure drop, a contrast to the theory in circular tubes, which overpredicts this
quantity.

In all geometries, the main effect of gravity is to alter the thickness of the fluid film
deposited behind the finger tip. If the bubble is travelling upwards, additional fluid
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accumulates in the film and both the pressure drop across the finger tip and the
flow past the bubble increase at a given Ca. If the bubble is being driven downwards,
the film becomes thinner with concomitant decreases in the flow past the bubble and
pressure drop. In every case, gravitational effects become negligible as Ca increases.

At given Ca and Bo, the pressure drop over the bubble tip in a rectangular tube is
always lower than that in an elliptical tube of the same aspect ratio and transverse
length scale. For tubes of the same transverse length scale, the pressure drop decreases
with increasing aspect ratio. For tubes of the same cross-sectional area, however, the
pressure drop increases (slightly) with increasing aspect ratio. This result could have
important implications in the airway reopening problem.

Wong et al.’s (1992) calculations of static bubbles shapes have already shown that
the air–liquid interface in rectangular tubes is non-axisymmetric at Ca = 0. In non-
circular tubes, we find that the air–liquid interface develops a noticeable asymmetry
near the tip of the air finger at all values of the capillary and Bond numbers. The tip
asymmetry at finite Ca is caused by the non-axisymmetric passage of fluid around the
tip and is, therefore, not the same as the static asymmetry. In tubes of moderate aspect
ratio, at high values of the capillary number, the interface eventually approaches an
axisymmetric equilibrium configuration, although the decay rates can be very slow.

Below a particular value of the capillary number, Ĉa(α, Bo), there is no axisymmetric
equilibrium state and the interface remains non-axisymmetric. In both elliptical and
rectangular tubes, there is a value of the aspect ratio, α̂, above which the equilibrium

interface shape is always non-axisymmetric. The value of Ĉa might be of interest in

industrial coating processes because if Ca < Ĉa dry regions may develop on the tube
wall after passage of the finger. In practice, the development of dry spots will depend
crucially upon an interplay among the curing time of the fluid, the time taken for
the fluid to drain into lobes and the Van der Waals forces that cause film rupture.

The theoretical values of Ĉa determined in Appendix B were calculated assuming
an infinitely thin film at an infinite distance behind the finger tip. The action of
Van der Waals forces will cause film rupture a finite distance behind the tip at values

of Ca > Ĉa.
In non-axisymmetric tubes we find four different flow regimes, three of which con-

tain a region of reversed flow in the frame moving with the bubble tip. The capillary
number above which the reversed flow disappears, CaT , decreases with increasing
aspect ratio and increasing Bond number. CaT is always lower in rectangular tubes,
than in elliptical tubes of the same aspect ratio. Thus, the circular tube contains
a region of recirculating flow for the largest range of Ca. The changes in the flow
topology could be of importance in problems in which the air–liquid interface is
contaminated by a significant amount of surfactant. In this situation, the surface ten-
sion depends on the surfactant concentration, determined by an advection–diffusion
process on the air–liquid interface. If the advective process dominates, the different
surface flow fields may lead to noticeable variations in the surface tension along the
interface.

Perhaps the most surprising result is the discovery of a rescaling, based upon the
aspect ratio, that collapses the finger radius far behind the bubble tip in rectangular
tubes at a given Ca onto that in the square tube at the same Ca. The rescaling is only

applicable to axisymmetric equilibrium shapes, i.e. for Ca < Ĉa, but appears to be
near perfect. In the case of elliptical tubes, the same rescaling collapses the interface
radius onto that in the circular tube, but as α increases the scaling loses accuracy.
The physical interpretation of the rescaling is that for rectangular tubes of the same
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cross-sectional area, the propagation speed of the air finger, driven by injection of
air at a constant volumetric rate, is independent of the aspect ratio. The result only
holds if the equilibrium shape of the air–liquid interface is axisymmetric, however,
and so once α > α̂ it no longer applies.

Furthermore, the pressure drop across the bubble tip in a rectangular/elliptical
tube of aspect ratio α may be estimated from the pressure drop in a square/circular
tube. For all the aspect ratios we have examined (α 6 2) the ratio between the mean
curvatures of the static interface shapes is always approximately equal to the ratio of
the pressure drops across the tip at any Ca (relative error within 1%). The functional
form of the pressure drop–Ca relationship, therefore, appears to be independent of
the precise details of the tube geometry, as previously demonstrated by Wong et al.
(1995b) at small Ca.
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Appendix A. Convergence of numerical results
Table 3 shows a convergence study in a square tube. The pressure drop across the

bubble tip, ∆p
Ca

, finger radii, rh and rd, measured 11 half-widths behind the finger
tip, and flow rate through the computational domain, Q, are shown at a number
of different values of the capillary number, Ca. The coarse and fine meshes consist
of 19 706 and 39 680 degrees of freedom, respectively. The relative error between the
two sets of results is within 0.5% for all parameters. Note the development of the tip
asymmetry at Ca = 3.

Appendix B. Calculation of Ĉa
The rescaling (3.3) only applies in situations in which the air finger becomes

axisymmetric far behind the bubble tip, i.e. for Ca < Ĉa. Thus, Ĉa is defined to be
the value of Ca for which an axisymmetric air–liquid interface touches the tube walls
at an infinite distance behind the finger tip; so that, as x3 →∞, the cross-sectional
area of the fluid in one quarter of the tube will approach

Â =

{
1
4
π(α− 1) for elliptical tubes,

α− 1
4
π for rectangular tubes.

(B 1)

In the absence of gravity, u3 → 1 as x3 →∞ and so the flow rate in the computational

domain at Ca = Ĉa must equal Â. The flow rate is independent of the axial position

and hence Ĉa may be calculated using relatively short computational domains. We
used a Newton–Raphson method to determine the value of Ca for which Q = Â and

figure 16 shows the results for elliptical and rectangular tubes. Ĉa increases with α and
ultimately approaches a vertical asymptote as α→ 2.04 and α→ 2.65 for rectangular
and elliptical tubes, respectively.
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Coarse mesh Fine mesh

Ca ∆p
Ca

rh rd Q ∆p
Ca

rh rd Q

0.01 2.10 0.992 1.10 0.130 2.10 0.990 1.10 0.130
0.02 2.23 0.993 1.05 0.173 2.23 0.993 1.05 0.173
0.03 2.34 0.992 1.01 0.206 2.34 0.991 1.01 0.206
0.04 2.43 0.985 0.991 0.232 2.43 0.985 0.991 0.232
0.05 2.52 0.973 0.975 0.255 2.52 0.973 0.975 0.255
0.06 2.59 0.961 0.961 0.274 2.59 0.961 0.961 0.274
0.07 2.67 0.950 0.950 0.291 2.66 0.950 0.950 0.291
0.08 2.73 0.940 0.940 0.306 2.73 0.940 0.940 0.306
0.09 2.80 0.931 0.931 0.319 2.79 0.931 0.931 0.319
0.1 2.86 0.923 0.923 0.331 2.85 0.923 0.923 0.331
0.2 3.36 0.867 0.867 0.409 3.36 0.867 0.867 0.409
0.3 3.77 0.835 0.835 0.452 3.77 0.835 0.835 0.452
0.4 4.14 0.814 0.814 0.479 4.13 0.814 0.814 0.479
0.5 4.47 0.799 0.799 0.499 4.47 0.799 0.799 0.499
0.6 4.79 0.787 0.787 0.514 4.78 0.787 0.787 0.514
0.7 5.10 0.778 0.778 0.525 5.09 0.778 0.778 0.525
0.8 5.40 0.770 0.770 0.534 5.39 0.770 0.770 0.534
0.9 5.69 0.764 0.764 0.542 5.68 0.764 0.764 0.542
1 5.97 0.758 0.758 0.548 5.96 0.758 0.758 0.548
2 8.67 0.731 0.731 0.581 8.65 0.731 0.731 0.581
3 11.3 0.719 0.720 0.593 11.2 0.719 0.720 0.593
4 13.8 0.713 0.715 0.600 13.8 0.713 0.715 0.600
5 16.4 0.709 0.712 0.604 16.4 0.709 0.712 0.604
6 18.9 0.705 0.710 0.607 18.9 0.705 0.710 0.607
7 21.5 0.703 0.709 0.609 21.4 0.703 0.709 0.609
8 24.0 0.701 0.708 0.610 24.0 0.701 0.708 0.610
9 26.6 0.699 0.708 0.611 26.5 0.699 0.708 0.611

10 29.1 0.697 0.708 0.612 29.0 0.697 0.708 0.612

Table 3. Convergence study in a square tube.
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Figure 16. The capillary number Ĉa at which an axisymmetric air–liquid interface touches the tube
walls as x3 →∞ plotted as a function of aspect ratio α for (a) rectangular, and (b) elliptical tubes.
In the case of the rectangular tube, the value of α̂ calculated from equation (3.4) is indicated as the
dashed line.
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